 / StackTest.java

// Linked list implementation of Stack

 class StackException extends Exception {

 public StackException(String s) {

 super(s);

 }

}

class Stack {

 class Node {

 int data;

 Node next;

 }

 private Node top;

 public Stack()

 {

 top = null;

 }

 public void push(int x) {

 Node t = new Node();

 t.data = x;

 t.next = top;

 top = t;

 }

 // only to be called if list is non-empty.

 // Otherwise an exception should be thrown.

 public int pop() throws StackException

 {

 if(this.isEmpty())

 throw new StackException("\nIllegal to pop() an empty Stack\n");

 int x = top.data;

 top = top.next;

 return x;

 }

 public boolean isEmpty(){

 return top == null;

 }

 public int size() {

 int c = 0;

 Node t = top;

 while(t != null) {

 ++c;

 t = t.next;

 }

 return c;

 }

 public void display() {

 Node t = top;

 //Console.Write("\nStack contents are: ");

 System.out.println("\nStack contents are: ");

 while (t != null) {

 System.out.print(t.data + " ");

 t = t.next;

 }

 System.out.println("\n");

 }

}

public class StackTest

{

 public static void main(String[] arg){

 Stack s = new Stack();

 System.out.println("Stack is created\n");

 // piece of code to test our exception mechanism

 try {

 s.pop();

 } catch (StackException e) {

 System.out.println("Exception thrown: " + e);

 }

 s.push(10); s.push(3); s.push(11); s.push(7);

 s.display();

 System.out.println("Stack sixe is " + s.size());

 /* int i = s.pop();

 System.out.println("Just popped " + i);

 s.display();

 */

 }

}

[image: image1.png]top

[First create a temp node and assign 44|
Into data field and top in link field

|And in last assign temp assign into top|

[image: image2.png]Pop three element
temp = top;
top = top->link;
temp->link = NULL;
free(temp);

public int pop() throws StackException

 {

 if(this.isEmpty())

 throw new StackException("\nIllegal to pop() an empty Stack\n");

 int x = top.data;

 top = top.next;

 return x;

 }

You're assuming that the dynamic array does its resize operations quite intelligently. If this is not the case, however, you might end up with O(n^2) runtime: Suppose the array does not double its size when full but simply is resized to size+1. Also, suppose it starts with size 1. You'd insert the first element in O(1). When inserting the second elment, the array would need to be resized to size 2, requiring it to copy the previous value. When inserting element k, it would currently have size k-1, and need to be resized to size k, resulting in k-1 elements that need to be copied, and so on.

Thus, for inserting n elements, you'd end up with copying the array n-1 times: O(n) resizes. The copy operations are also linearly dependent on n since the more elements are have been inserted, the more need to be copied: O(n) copies per resize. This results in O(n*n) = O(n^2) as its runtime complexity.

