На главную
ПРАВИЛА FAQ Помощь Участники Календарь Избранное DigiMania RSS

Дорогие друзья! Поздравляем вас с Новым 2018 годом!

Всем удачи, успеха и благополучия!
В новом году ожидаем новых рекордов при подсчёте количества ёлочек на экране ;)


msm.ru
! правила раздела Алгоритмы
1. Помните, что название темы должно хоть как-то отражать ее содержимое (не создавайте темы с заголовком ПОМОГИТЕ, HELP и т.д.). Злоупотребление заглавными буквами в заголовках тем ЗАПРЕЩЕНО.
2. При создании темы постарайтесь, как можно более точно описать проблему, а не ограничиваться общими понятиями и определениями.
3. Приводимые фрагменты исходного кода старайтесь выделять тегами code.../code
4. Помните, чем подробнее Вы опишете свою проблему, тем быстрее получите вразумительный совет
5. Запрещено поднимать неактуальные темы (ПРИМЕР: запрещено отвечать на вопрос из серии "срочно надо", заданный в 2003 году)
6. И не забывайте о кнопочках TRANSLIT и РУССКАЯ КЛАВИАТУРА, если не можете писать в русской раскладке :)
Модераторы: shadeofgray, JoeUser
Страницы: (5) [1] 2 3 ... Последняя » все  ( Перейти к последнему сообщению )  
> Нецелая степень отрицательного числа
Как пишет Википедия, "корень нечётной степени из отрицательного числа — отрицательное число, однозначно определенное".
Т.е. получается, например, (-32)-0.2=-0.5 или (-10)-3/7.

Получается, что если основание степени X отрицательное, а показатель Y нецелый, значит нужно найти P и Q, такие, что Y=-P/Q. И если Q - чётный, значит облом. Если нечётный, значит ответом будет -(Sqrt_Q(X))^P. В нашем случае можно сделать проще: -(|X|^Y).
К примеру, имеем -3/7, представленное числом конечной точности -0.428571428571429.
Как найти P=3 и Q=7 ???

Добавлено
Если |Y|>1 то можно сделать так: V=Trunc(|Y|), W=Frac(|Y|), XY=-XV*XW, если, конечно, W будет представлено как P/Q, где Q нечётное.
Я к тому, что возможно, W=Frac(|Y|) будет легче разложить на P и Q (W=P/Q).
Подбор оптимальной дроби под вещественное число - широко же известная задача, и, сколько помнится, вполне неплохо решённая. Что-то с цепными дробями там было. Надо рыть... :scratch:
По логике это делается так:
0.2 = 2/10, находим НОД(2,10)=2, делим 2 и 10 на 2, получаем 1 и 5, т.е. P=1, Q=5.
0.25 = 25/100, находим НОД(25,100)=25, делим 25 и 100 на 25, получаем 1 и 4, т.е. P=1, Q=4.
3/7 = 0.4285714285714 = 4285714285714/10000000000000, находим НОД(4285714285714,10000000000000)=2, делим на 2, получаем P=2142857142857, Q=5000000000000, но это явно не 3 и 7... аналогичная история будет с 1/3.
Что делать?
Во, точно: wiki: Цепная дробь - Приближение вещественных чисел рациональнымих
Цитата
Цепные дроби позволяют эффективно находить хорошие рациональные приближения вещественных чисел.
Если взять 0.428571428571429, то 1/0.428571428571429 = 2.33333333333333. Если вычесть 2, то получим 0.333333333333333 и далее 1/0,333333333333333 = 3. Вот вам и 3/7. Но это я вычислил вручную.
Если взять 1764/7463, то так уже не прокатит.

Славян, ща гляну :)
Цитата Jin X @
Как пишет Википедия, "корень нечётной степени из отрицательного числа — отрицательное число, однозначно определенное".
Т.е. получается, например, (-32)-0.2=-0.5 или (-10)-3/7.

Эммм... а с каких пор -0,2 и -3/7 стали НЕЧЁТНЫМИ?
Что же до переноса на
Цитата Jin X @
Получается, что если основание степени X отрицательное, а показатель Y нецелый, значит нужно найти P и Q, такие, что Y=-P/Q. И если Q - чётный, значит облом. Если нечётный, значит ответом будет -(Sqrt_Q(X))^P. В нашем случае можно сделать проще: -(|X|^Y).

то он неоднозначен. Ибо никто не отменял того, что -0,2 = -1/5 = -2/10, или что -3/7 = -6/14. А объявлять, что равенство -0,2 = -1/5 более истинно, чем равенство -0,2 = -2/10 есть нонсенс.

Добавлено
Цитата Jin X @
Если взять 1764/7463, то так уже не прокатит.
Дык это просто точности поди не хватит потому что...
Есть претензии ко мне как к модератору? читайте Правила, разделы 5 и 6, и действуйте соответственно.
Есть претензии ко мне как к участнику? да ради бога.
Не нравятся мои ответы? не читайте их.
В общем, берегите себя. Нервные клетки не восстанавливаются.
Akina, можно просто расширить класс нечётных чисел до:
Цитата
Нецелое рациональное число q назовём Нечётным, если в несократимой дроби для q нечётным является знаменатель.
и т.о. пытаться извлекать корень из нечётных рациональных. :)

Добавлено
Имелось ввиду: и будем пытаться извлекать корень рациональной "нечётной" степени из отрицательных.
Цитата Славян @
можно просто расширить класс нечётных чисел до:

Такое расширение работает только на подмножестве несократимых дробей и, следовательно, неприменимо ко всему классу дробей.
Тогда уж куда как разумнее перейти к вычислению нецелых степеней в пространстве комплексных чисел на подмножестве результатов с нулевой мнимой частью...
Есть претензии ко мне как к модератору? читайте Правила, разделы 5 и 6, и действуйте соответственно.
Есть претензии ко мне как к участнику? да ради бога.
Не нравятся мои ответы? не читайте их.
В общем, берегите себя. Нервные клетки не восстанавливаются.
Цитата Akina @
Такое расширение работает только на подмножестве несократимых дробей и, следовательно, неприменимо ко всему классу дробей.

Дружище, ты не прав!

Для того, чтобы мочь не получить комплексное число при возведении в степень отрицательного числа в дробную степень - нужно три условия:

1) Если степень - дробь, то она должна быть несократимая (или - сокращать, а что такое "подмножество сократимых дробей"? дай пруф)
2) Четность или нечетность рассматривается только для знаменателя дроби степени (ибо только знаменатель отвечает за кратность извлекаемого корня)
3) Для иррациональных чисел данный подход не использовать под страхом стерилизации
Мои программные ништякиhttp://majestio.info
Цитата JoeUser @
а что такое "подмножество сократимых дробей"?

Ясен пень, всё множество дробей за вычетом дробей несократимых. Как я понимаю, по вопросу определения этих двух подмножеств у тебя никаких проблем нет...
Есть претензии ко мне как к модератору? читайте Правила, разделы 5 и 6, и действуйте соответственно.
Есть претензии ко мне как к участнику? да ради бога.
Не нравятся мои ответы? не читайте их.
В общем, берегите себя. Нервные клетки не восстанавливаются.
Цитата Akina @
проблем нет...

Есть чисто теологические. Вернее научно-общепринятые научными учеными от математики :lol:
Akina, "множество сократимых дробей" и "множество несократимых дробей" в математике должно где-то обозначаться, фигурировать. Если это не собственный креатив. Давай обозначим тематику - где эти термины используются? Работы/источники/учебники/монографии? Чисто чтобы заценить "не локальность терминов", а их глубину глубин.
Мои программные ништякиhttp://majestio.info
Цитата JoeUser @
"множество сократимых дробей" и "множество несократимых дробей" в математике должно где-то обозначаться, фигурировать. Если это не собственный креатив.

Насколько я понимаю, именно этот "креатив" (если, конечно, принять на веру утверждение, что не существует дробей, не относящихся ни к одному из этих подмножеств) и породил собственно сию тему. Ну может плюс утверждение, что любое вещественное число может быть приближено дробью с любой заданной точностью.
Есть претензии ко мне как к модератору? читайте Правила, разделы 5 и 6, и действуйте соответственно.
Есть претензии ко мне как к участнику? да ради бога.
Не нравятся мои ответы? не читайте их.
В общем, берегите себя. Нервные клетки не восстанавливаются.
Сократимые и несократимые дроби, это всего лишь выбор числителя и знаменателя. Число, обозначаемое 2/3 или 4/6 остаётся одним и тем же, никакого особого математического смысла эти обозначения не несут (кроме того, что числом 2/3 проще оперировать, чем, скажем, 117197488/175796232). Так же десятичные дроби 0.6(0) и 0.5(9) обозначают одно и то же число, просто приняли соглашение, что для записи числа 3/5 используется первое обозначение, а не второе.

Цитата JoeUser @
"множество сократимых дробей" и "множество несократимых дробей" в математике должно где-то обозначаться, фигурировать.
Не существует множеств сократимых и несократимых дробей. Есть множество рациональных чисел, обозначаемое особо символом ℚ. А будешь ты использовать для их обозначения: сократимые или несократимые дроби, разложение в сумму аликратных, десятичные с периодом, или найдёшь ещё какой-нибудь удобный тебе способ их записывать, это твоё личное дело, и не надо свои предпочтения навязывать окружающим.

И вообще, думаю, эта тема скоро превратмтся (или уже превратилась) в очередной холивар.

Добавлено
Цитата Akina @
утверждение, что любое вещественное число может быть приближено дробью с любой заданной точностью
Можно ещё вспомнить теорему "Множество рациональных чисел всюду плотно"
Сообщение отредактировано: amk -
Всё написанное выше это всего лишь моё мнение, возможно ошибочное.
Цитата Akina @
Эммм... а с каких пор -0,2 и -3/7 стали НЕЧЁТНЫМИ?

Там же "корень", т.е. x^(-3/7) = (x^(1/7))^(-3) и вот в скобках корень нечетной степени. 0.2 это 1/5, в знаменателе нечетное число, значит, можно вычислить через корень нечетной степени.
Цитата Jin X @
К примеру, имеем -3/7, представленное числом конечной точности -0.428571428571429.
Как найти P=3 и Q=7 ???

Складывать само с собой, пока не получится результат, у которого дробная часть отличается от нулевой нв невеликое по отношению к единице число. Сколько раз сложили, это Q, какая получилась целая часть, это Р. "Невеликость" определяется известной точностью исходного числа, разница должна быть по модулю меньше, чем Q*эпсилон.
Долог путь в бессмертие... я еще вернусь.
Профильный скилл "Телепатия" 8%
ТРОЛЛЬ - Троян Разрушительный Опасный, Лучше ЛинятЬ (с) Freezing Spell
Прошу потестить игру.
Цитата Vesper @
Там же "корень", т.е. x^(-3/7) = (x^(1/7))^(-3) и вот в скобках корень нечетной степени.

Честнее написать x^(-3/7) = (x^(N/7))^(-3*N), где N - натуральное. И нечётность корня как-то сразу поплыла...
Есть претензии ко мне как к модератору? читайте Правила, разделы 5 и 6, и действуйте соответственно.
Есть претензии ко мне как к участнику? да ради бога.
Не нравятся мои ответы? не читайте их.
В общем, берегите себя. Нервные клетки не восстанавливаются.
1 пользователей читают эту тему (1 гостей и 0 скрытых пользователей)
0 пользователей:


Рейтинг@Mail.ru
[ Script Execution time: 0,1407 ]   [ 19 queries used ]   [ Generated: 17.01.18, 01:42 GMT ]